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Abstract. The method of partial differential approximants (PDA) has been introduced for 
approximating functions of two or more variables given a finite number of coefficients of 
their power series. It is supposed to be effective close to the multicritical points, where the 
thermodynamic functions are expected to behave according to the scaling hypothesis. In 
order to assess the performance of the method, we have undertaken the construction of 
PDAS for several test functions of tn'o variables. For some simple functions, which are 
represented exactly by PDAS and which exhibit an analogue of a multicritical point, the 
numerical estimates yielded very good results even at lower orders. For other functions the 
estimates tended to improve as we increased the order of the approximants. For the best 
PDAS we constructed flow diagrams and estimated the scaling functions. Also, we have 
analysed the dimensional crossover (from d = 3 to d = 2) of the spin-; axial anisotropic king 
model on the FCC lattice. We considered series expansions for the direct susceptibility and 
also for the sum of the direct and the staggered susceptibilities. In general, our estimates 
agree with the scaling predictions. 

1. Introduction 

The usefulness of the Pad6 method for approximating functions of one variable given a 
finite number of coefficients of their power series is appreciated widely. In the theory of 
critical phenomena, for instance, the so-called dlog Pad6 approximants have been very 
practical for providing estimates of the critical parameters of thermodynamic model 
functions (Hunter and Baker 1973, Baker and Hunter 1973). These successes have 
stimulated some recent proposals to generalise the Pad6 method for approximating 
functions of two or more variables (Chisholm 1973, Roberts et a1 1975). The present 
publication refers to a proposal by Fisher (1977a, b), which seems particularly suited for 
analysing the scaling behaviour of thermodynamic model functions in the neighbour- 
hood of their multicritical points. 

In the conventional dlog Pad6 method (Baker 1975), the logarithmic derivative of a 
function f(x)  is approximated as 

where PL(x) and QM(x) are polynomials of degrees L and M respectively. These 
rational approximants may represent well branch-point singularities of the form 

f(x)  = A ( X , - X ) - ~  for x +xi, (1.2) 
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where y is a non-integral exponent. One should recall at this point that the approxi- 
mants FLM(x) may also be regarded as the solutions of the differential equation 

P L ( ~ ) F L M ( x )  = Q M ~ )  d(FL.w(X))/dX. (1.3) 

The coefficients p I  and qm ( I  = 0 ,  1, . . , , L; m = 0 ,  1, . . . , M )  of thcpolynomials PL and 
QM in powers of x are then chosen so that the power series solution of equation (1.3) 
agrees with the expansion of f(x) to optimal order. In the critical region we have 

Q M ( x )  Q S ( X  -xC) (1.4a) 

and 

P(x, )  = Pc = -yQS, (1.46) 

Let us consider a function of two variables x and y ,  given by the series expansion 
which provide estimates of x c  and y. 

where the indices k and k' belong to some set of integers K. In analogy with equation 
(1.3), Fisher (1977a, b) proposed a novel class of approximants for these functions, 
FLMN(x, y ) ,  defined as the solutions of the partial differential equation 

subjected to suitable boundary conditions. The polynomials PL, QM and RN are chosen 
so that the series solution for F(x,  y )  in powers of x and y agrees with the known 
expansion (1.5) as far as possible. This simply leads to a set of simultaneous linear 
equations which may be solved by standard numerical methods. 

As we stated above, these 'partial differential approximants' (PDA) are particularly 
effective when f(x, y )  displays a singular behaviour according to the scaling hypothesis 
of the theory of critical phenomena, that is, for 

f(x, y ) ~ l A x l - ' Z ( A y / l A x / ~ ) ,  (1.7) 

as Ax = xc- x + 0 and Ay = y c  - y + 0, where y and 4 are two exponents, in general 
non-integral, while Z ( z )  is a 'scaling function' of a single variable z .  In this case, it is 
easy to see that the multicritical point will be estimated by 

QM ( ~ c ,  Y C )  = RN (xc, Y J  = 0 (1.8) 

while the rate of variation of RN and QM at the multicritical point, normalised by 
P, = PL(xc, y c ) ,  will give estimates for the exponents y and 4. 

So far, except for some exploratory trials, PDAS have been tested only in the problem 
of the anisotropic exchange crossover in three-dimensional classical ferromagnets 
(Fisher and Kerr 1977). As far as we know, there have been no applications either to 
other physical problems of interest or to some model examples. The main point of our 
paper is thus to contribute to assessing the potentialities of the method by investigating 
numerically some classes of test functions, and also the dimensional crossover in the 
Ising model. We believe that our tests will reveal the advantages and some drawbacks 
(slow convergence, the need for longer series) of these PDAs. 

The layout of our paper is as follows. In § 2 we consider a more general scaling form, 
where the scaling axes are not parallel to the Cartesian axes, and introduce the method 
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of characteristics for obtaining the numerical solutions of the partial differential 
equation (1.6). Also, we discuss the criteria for the stability of these solutions near the 
multicritical points. In 0 3 we study several model functions, some of which can be 
represented exactly by PDAS. We obtain the multicritical parameters, some flow 
diagrams, and try to compare the performance of different orders of PDAS. Section 4 is 
about the analysis of the dimensional crossover, between dimensions d = 3 and d = 2, of 
the Ising model with lattice anisotropy. In particular, we use the PDAS for estimating the 
shape of the phase boundaries in the temperature-anisotropy phase diagram. Finally, a 
summary is presented in § 5 .  

2. Further description of the method 

In general, the scaling axes are not parallel to the Cartesian x ,  y axes. We thus have the 
scaling form 

(2.1) f ( x ,  Y 1 = l A f l - y z ( A Y / l A 4 9 ,  
where 

A2 = Ax - ( l / e2 )Ay ,  
and 

AY = A y  - e l A x .  (2.3) 
The parameters el  and e2 represent the slopes of the optimal scaling axes in the 
Cartesian coordinate system specified by x and y .  

The scaling form of equation (2.1) obeys the partial differential equation 

which should be compared, in the vicinity of the multicritical point ( x o  y,), with the 
defining differential equation (1.6) of the PDAS. If the polynomials PL, QM and RN in 
leading order close to the multicritical point are given by 

R N ( x ,  y )=RiAx + R A Y ,  (2.7) 
we may write the following expressions for the slopes of the scaling axes and the 
multicritical exponents, 

4 = -1 - y(Qi +Rz)/Pc.  (2.10) 

Thus the estimate for the location of the multicritical point is given by QM(x , ,  y,) = 
RN(x,, y,) = 0, while el, e2, y and 4 are related to the rate of change of the polynomials 
QM and RN at the estimated values ( x , ,  y,) provided that PL(xo y , )  # 0. 



2030 J F Stilck and S R Salinas 

To estimate the actual values assumed by f(x, y), Fisher (1977a) suggested the 
numerical solution of equation (1.6) via the method of characteristics. In the multi- 
critical region, this corresponds to the evaluation of the scaling function Z ( z ) ,  which is 
often of interest in the theory of critical phenomena. Let us consider a time-like 
variable t such that 

x = x(t), Y = Y ( t ) ,  
and 

(2.11) 

From equation (1.6) we have 

and, therefore, 

(2.14) 

where it should be stressed that the integration is performed along the trajectories 
defined by equation (2.12). Given the polynomials QM(x, y )  and RN(x, y), the problem 
is then reduced to the solution of the set of coupled ordinary differential equations 

In problems of physical interest it is often important to know the loci of the 
singularities of the functions f(x, y )  (for instance, the shapes of the phase boundaries 
near the bicritical point of an antiferromagnet in the field-temperature phase diagram). 
From equation (2.14), since PL(x, y )  is a finite polynomial, there is a finite difference 
between the values assumed by the functionf(x, y), calculated at two points which lie on 
the same trajectory. Therefore, the critical lines, where f(x, y )  is supposed to diverge, 
are flow-lines defined by equations (2.12). It is enough to know one single point on 
these trajectories, besides the multicritical point, to be able to construct them numeric- 
ally. An illuminating application of this procedure, which will become more trans- 
parent in the following sections, is presented in Fisher and Kerr (1977). 

In the neighbourhood of the estimated multicritical point (xc, yc), equations (2.12) 
may be written as the linearised forms 

( 2 . 1 5 ~ )  

(2,12). 

dxldt = QiAx + QzAy, 

and 

dy/dt=RlAx+R2Ay, (2.156) 

which have the general solution 

Ax = CI exp(Alt) + Cz exp(Azt), ( 2 . 1 6 ~ )  

and 

Ay  = Clel exp(Alt) + C2e2 exp(Azt), (2.16b) 

where C1 and Cz are arbitrary constants. The particular solutions with C1= 0 or C2 = 0 
define the scaling axes, and the eigenvalues A 1 and A Z  are given by 

A I , Z  = ~ ( Q ~ + R Z ) ~ ~ [ ( Q ~ - R ~ ) ~ + ~ Q Z R ~ I =  Qzel.z+Ql. (2.17) 

A complete discussion about the stability of equations (2.16), which will define the 
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behaviour of the flow-lines In the immediate vicinity of the estimated multicritical point, 
may be found, for example, in Brand (1966). In the case where A1,  A 2  < 0, all flow-lines 
in the neighbourhood of (xo y , )  converge onto this estimated multicritical point. 
Although it is desirable to have a stable multicritical point, this is not strictly necessary 
for performing numerical evaluations of the function f(x, y) .  The estimated values of 
(xc, y , )  may happen to be a saddle point (for A l A 2  < 0) or even a star-like unstable node. 

Another interesting feature of the flow diagrams is the following expression for the 
slope of the flow-lines in the immediate vicinity of the estimated multicritical point, 

(2.18) 

For A < A 2  < 0, unless C2 = 0, the value of dy/dx tends to the slope e2 of the scaling axis 
as t + 00. This will become apparent in the analysis of the model functions which are 
considered in the next section. 

Finally, a relevant question concerns the magnitude of the region where the 
predictions of the linear approximation still work. This may be estimated by the 
standard techniques associated with the Liapunov functions (Brand 1966). 

3. Numerical results with test functions 

We applied the technique of PDAS to obtain numerical estimates pertaining to the 
following model functions: 

(i) functions with one line of singularities, 

Fa = (1 - 2~ - Y ) - ~ / ’ ,  

F~ = (1 - 2~ - y)-3/2 exP(-Y 1; 
(ii) functions with two lines of singularities, 

~ , = ( 1 - ~ - ~ ~ ) - ~ / ~ ( 1 - 2 ~ - 4 ~ ) - ~ / ~ ,  (3.3) 

~ ~ = ( 1 - ~ - 2 ~ ) - ~ ’ ~ ( 1 - 3 ~ - ~ ) - ~ i n ( i - 3 x - y ) ,  (3.4) 

F,= (1 -X - h ~ ) - ~ / ’ ( i  -2x -$y)-1/2+exp(-x -2y) COS(XY), 

F ~ =  (1 - ~ - 2 y ) - ~ / ~ ( 1 - 3 x - y ) - * + e x p ( - x  -2y) C O S ( X Y ) .  

(3.5) 

(3.6) 

Functions Fa to Fd are represented exactly by PDAS of lower orders (as remarked by 
Fisher (1977a), they belong to a general class of functions which may be represented 
exactly). Roberts er al (1975) have analysed similar functions by the techniques of 
Canterbury approximants. Also, these functions may be regarded as the natural 
extensions of the one-variable functions which had been analysed by the Pad6 method 
and other techniques by Hunter and Baker (1973). 

The singular parts of the test functions (3.3) to (3.6) obey the general scaling form of 
equation (2.1), with two options for the scaling function Z ( z ) .  For example, in the case 
of functions F, and Fe, one of the options is 

A; = 1 -x -L 2Yt (3.7a) 

and 

A y  = 1 - 2~ - S Y ,  1 (3.7b) 
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which leads to 

Z ( 2 )  = 

Z ( 2 )  = z - 3 / 2 ,  

y-2+3 1 
e l  = -10, e2 = -2, 2, 

e l  = -2, e2 = -10, Y-%$=T, 

In the other option A.? and A 9  are interchanged, leading to 
3 1  

For these functions, unlike in the case of the real physical problems, it is not possible to 
determine y and q5 independently. Also, it should be remarked that F, may be 
represented exactly by a set of PDAS where PL has a constant value and the polynomials 
QM and R N  are linear in the variables x and y .  

Functions Fa to Ff were represented as the power series 

with the coefficients fk ,k '  corresponding to a triangular array (that is, with k + k ' s  os, 
where the integer os gives the order of the series). Also, the polynomials PL, QM and 
RN are given by the triangular arrays 

(3.10) 

(3.11) 

where the integers L, M and N are the number of terms of the polynomials PL, QM and 
R N ,  respectively, and 1 + 1' s o p ,  m + m ' s 00, and n + n ' OR. As we are fixing L, M and 
N, instead of the order op, OQ and oR, the polynomials PL, QM and RN may not be 
symmetric in terms of the variables x and y .  For example, the polynomial PL, with 
L = 4, is written as 

P 4 ( X ,  Y ) = P o o + P l o x  + P o l y  +P2OX2. (3.12) 

If we make poo = 1, the L + M + N - 1 remaining coefficients of the polynomials are 
determined by the set of linear equations which come from the substitution of the series 
expansion (3.8) into equation (1.6). Given a series of order os, we may construct 
approximants of order oA, such that 

O A  0s - 1, (3.13) 

where 

L + M  + N - 1 = ~ ( O A  + ~) (OA + 2) -K(OA). (3.14) 

The construction of all PDAS up to a certain order, in analogy with the standard Pad6 
tables, is a rather formidable task even at not so high orders. Indeed, the number of 
approximants of order OA is given by 

K [ K ( O A ) ] = ~ ( O A + 1 ) 2 ( 0 A + 2 ) 2 + a ( O A f  l)(OA+2)+1. (3.15) 

This clearly imposes sharp limitations on the numerical calculatidns. Therefore we 
have chosen 88 approximants, up to order 13, in a somewhat arbitrary fashion. As 
defined in table 1, we included diagonal and near-diagonal approximants ( L  = M = N ) ,  
as well as some off-diagonal ones. 
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Table 1. Specifications of the approximants to the power series of the test functions. The 
approximants were numbered from 1 to 88; L, M and N stand for the number of terms in 
the polynomials Pr, QM and RN, respectively. 

I L M N  I L M N  I L M N  I L M N  

1 1 3 3  
2 4 6 6  
3 2 5 1 5  
4 2 10 10 
5 1 5 2 5  
6 1 15 15 
7 7 2 5  5 
8 4 21 21 
9 6 5 3 5  

10 6 20 20 
11 6 35 5 
12 16 15 15 
13 36 5 5 
14 6 5 45 
15 6 15 35 
16 6 25 25 
11 6 35 15 
18 6 45 5 
19 14 21 21 
20 18 4 34 
21 18 19 19 
22 18 34 4 

23 23 22 22 
24 22 23 22 
25 22 22 23 
26 25 21 21 
27 21 25 21 
28 21 21 25 
29 37 15 15 
30 49 15 3 
31 15 3 49 
32 3 49 15 
33 3 32 32 
34 15 26 26 
35 27 26 26 
36 26 21 26 
37 26 26 21 
38 23 28 28 
39 37 21 21 
40 21 37 21 
41 21 21 37 
42 3 38 38 
43 67 6 6 
44 3 50 26 

45 3 26 50 
46 59 10 10 
41 10 59 10 
48 10 10 59 
49 66 7 6 
50 30 31 31 
51 31 30 31 
52 31 31 30 
53 29 31 32 
54  31 29 32 
55 32 29 31 
56 32 31 29 
5 1  29 32 31 
58 31 32 29 
59 28 32 32 
60 20 36 36 
61 36 28 28 
62 10 41 41 
63 45 23 24 
64 45 24 23 
65 3 15 14  
66 74 3 15 

61 15 74 3 
68 36 35 35 
69 35 36 35 
70 35 35 36 
71 31 34 35 
72 34 35 31 
73 35 34 31 
74 35 31 34 
75 34 36 36 
76 36 34 36 
17 36 36 34 
1 8  45 31 30 
79 45 30 31 
80 28 39 39 
81 30 30 38 
82 38 34 34 
83 50 28 28 
84 3 52 51 
85 3 51 52 
86 10 21 75 
87 21 15  10 
88 21 10 15  

It has been impossible to construct numerical approximants for Fa, even at the 
lowest orders, due to vanishing determinants. With the exception of some off -diagonal 
approximants, the estimates for the critical points of Fb lie along the critical line, and 
tend to cluster around the intersection with the Cartesian axes. For F, and Fd, even at 
the lowest orders, we obtained nearly exact results for the multicritical points, the slopes 
of the scaling axes and the multicritical exponents. However, some off-diagonal 
approximants give estimates of the multicritical point which concentrate along one of 
the critical lines. For these functions the system of linear equations tends to become ill 
conditioned as we increase the order of the PDAS. 

Because of the regular terms added to their singular parts, functions Fe and Ff are 
not represented exactly by finite PDAS. For the function Ff the singularities are stronger 
and closer to the origin than for Fe. So, it was not surprising to verify that Ff is better 
represented than Fe by PDAS of lower orders. A sample of the estimates for the 
multicritical parameters of Fe and Ff is given in tables 2 and 3 respectively. As a general 
pattern, the quality of the estimates improves as we increase the order of the approxi- 
mants. Also, diagonal and near-diagonal approximants tend to produce better esti- 
mates than off-diagonal ones. Tables 4 and 5 give ordered sequences of approximants 
according to the decreasing precision of their estimates. By the inspection of these 
sequences, it becomes apparent that there exists a correlation between the quality of 
different estimates: usually, a PDA which gives a good estimate of the location of the 
multicritical point also happens to produce good estimates of the slopes of the scaling 
axes and of the multicritical exponents. 
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Table 2. Estimates for the ‘critical parameters’ of the test function F e =  (1 - x  
x (1 -- 2x - - f y ) - ’ / ’ t  exp(-x - 2y) cos x y ,  provided by a subset of the approximants defined 
in table 1. 

I xc 

12 0.3186 
15 0.4612 
23 0.4668 
27 0.1893 
30 0.5921 
34 0.4547 
37 0.3913 
49 0.8315 
50 0.3406 
66 0.4570 
68 0.3806 
72 0.3735 
76 0.4268 
82 0.3739 
85 0.3742 
87 0.4061 

Y c  

2.318 
0.6485 
0.4075 

- 4 ~ 1 0 - - ~  

0.3446 
1.413 

1.309 
0.7495 
1.265 
1.256 
1.244 
1.248 
1.224 
1.036 

-0.9837 

-1.419 

el 

10.66 
-2.566 

-19.80 
30.39 

-10.08 
-6.248 

-22.18 
-1.286 
-5.917 

-18.78 
-12.08 

-9.685 
17.86 
-9.557 
-9.224 

-16.14 

e2 Y d, 

-2.128 5.537 -7.091 
-5.6x10-’ 0.5964 0.5928 
-0.7800 3.139 5 695 

1.004 0.1857 2.164 
-0.5056 -0.7342 -2.605 

0.9314 - 0.3029 -0.9209 
-2.002 -0.5770 -5.599 

1.082 -1.025 -2.038 
-2.004 1.185 -0.5753 
-3.845 0.3050 -0.6100 
-1.998 0.2370 -2.653 
-1.995 -0.3188 -3.646 
-1.748 0.9843 -2.899 
-1.995 4.5X10-2 -2.786 
-2.026 -0.261 -3.229 
-2.149 -0.3537 -2.350 

Table 3. Estimates for the ‘critical parameters’ of the test function F f = ( l - x  -2y)-’/‘ 
X (1 - 3x - y ) - *  + exp(-x - 2y) cos x y ,  for the same subset of PDAS presented in table 2. 

12 0.1884 0.4059 -2.950 -0.5044 0.4094 -1.104 
15 0.2035 0.4457 -3.712 -0.4022 -1.273 -2.043 
23 0.1989 0.3987 -2.966 -0.5030 -0.5720 -1.547 
27 0.2000 0.4000 -3.001 -0.5003 -0.2923 -1.398 
30 0.2353 0.3693 -4.141 -0.5071 0.9854 -0.3429 
34 0.2000 0.3999 -3.001 -0.5003 -6.67x10-’ -1.217 
37 0.2001 0.3999 -3.004 -0.5004 6.53x10-’ -1.216 
49 9.34X10-’ 0.6537 -2.662 -0.2878 -79.82 -1.525 
50 0.2001 0.4001 -3.007 -0.4991 1.017 -0.7439 
66 0.2635 0.3179 -4.307 -0.5884 -3.484 -0.9281 
68 0.2000 0.4006 -3.020 -0.5000 -13.81 -8.160 
72 0.2001 0.4004 -3.018 -0.4999 -11.03 -6.767 
76 0.2001 0.4000 -3.002 -0.5000 -0.8118 -1.655 
82 0.2021 0.3974 -1.467 7.85X10-’ 4.583 1.066 

87 0.2341 0.3296 -10.89 -5.04x10-2 4.621 1.526 
85 0.2003 0.4008 -3.018 -0.4959 -0.1895 - 1.344 

After obtaining the estimates of the multicritical parameters, we used the method of 
characteristics for solving numerically the differential equation (1.6). It turns out that 
most approximants for F, to Ff, despite yielding good estimates for the multicritical 
parameters, display a saddle-point unstable multicritical point in their flow diagrams. 
As a matter of fact, no correlations were apparent between the quality of the estimates 
and the stability of the multicritical point. 

In figure 1 we show the flow diagram corresponding to the approximant’number 1 
for F, (L = 1, M = N = 3). Within the numerical precision, this particular approximant 



Applications of  PDAs 2035 

Table 4. Ordered sequences of PDAS to the function Fe, according to the decreasing 
precision of their estimates. The parameters used in the ordering procedure are: Ac, 
distance between the estimated and the exact ‘multicritical point’: A l ,  distance between the 
estimated ‘multicritical point’ and the straight line 1 - x - i y  = 0; A,, distance between the 
estimated ‘multicritical point’ and the straight line 1 - 2x - f y  = 0; Aexp, distance between 
the estimated exponents ( y ,  4 )  and the straight line y -id = $ for the scaling option with 
e l  - -10 and e,-  -2; he,, absolute difference between the exact and the estimated values 
for e l ;  Aez, absolute difference between the exact and the estimated values for e 2 ;  he, equal 
to [(he1)’ + 

Ordered approximants according to increasing values of Ac 

82 72 73 75 74 77 69 53 68 70 55 57 8 1  86 85 7 1  64 79 4 1  
78 76 83 50 52 62 58 88 84 60 38 37 28 87 54 80 63 14 29 
24 3 1  45 9 59 6 1  47 66 15 13 25 23 20 26 34 2 2 1  6 12 
17 39 27 5 43 44 42 48 16 22 35 40 19 4 46 3 8 33 36 
32 11 10 30 1 49 65 67 56 5 1  7 18 

Increasing values of A l  

72 82 57 88 50 75 74 73 77 86 69 8 1  70 68 85 55 53 4 1  7 1  
64 79 83 52 62 78 58 20 60 76 16 84 14 87 3 1  47 18 37 54 
40 80 38 28 24 29 22 63 66 59 6 1  45 15 36 2 13 67 25 17 
23 21  26 34 6 9 39 12 42 48 35 3 4 19 46 33 27 8 11 
49 32 30 10 5 43 44 65 56 5 1  1 7 

Increasing values of A2 

13 57 72 4 1  39 4 82 42 11 46 35 19 85 75 74 83 73 77 69 
8 1  58 30 64 79 70 68 54 52 7 1  23 55 62 24 87 34 33 80 26 
21  29 53 78 6 60 48 6 1  86 25 59 84 15 50 10 66 37 14 3 1  
88 28 3 63 12 32 76 65 38 45 56 2 17 49 5 1  47 7 20 27 

9 22 5 43 44 40 16 67 36 1 8 18 

Increasing values of AeXp 

72 58 20 50 86 52 74 65 70 82 68 73 69 77 57 75 8 1  53 7 1  
85 5 5  45 79 3 1  28 83 41 60 47 62 78 14 84 54 87 37 46 66 
30 80 38 33 24 8 48 59 29 15 23 6 1  32 34 9 42 6 19 26 
39 22 4 1 5 16 17 25 43 44 88 49 63 3 35 27 11 76 36 
13 40 56 2 12 5 1  10 2 1  7 67 18 64 

Increasing values of hel 

30 12 76 46 72 33 39 19 4 1  42 82 24 57 5 1  85 13 35 54 56 
2 1  73 64 74 75 8 1  4 86 52 77 7 1  55 69 79 70 7 53 68 48 
10 60 58 29 80 27 6 11 26 34 84 78 6 1  83 50 32 28 62 59 
38 63 8 87 2 40 15 18 47 36 49 66 22 67 65 23 1 5 16 
17 25 43 44 88 37 14 3 3 1  45 20 9 

Increasing values of he2 

64 70 68 37 50 72 82 62 73 74 69 55 77 60 53 8 1  7 1  85 75 
79 83 57 52 86 4 1  24 78 28 87 84 58 80 38 29 3 1  20 54 48 
35 65 32 45 8 6 42 39 6 1  33 23 13 47 46 30 2 4 19 3 
66 40 15 59 26 6 1  18 1 5 16 17 25 43 44 88 22 9 34 49 
36 11 63 14 56 5 1  12 76 10 27 7 2 1  
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Table 4-continued. 

Increasing values of Ae 

72 4 1  82 24 57 85 54 35 42 39 73 64 33 74 75 8 1  30 46 13 
86 52 19 77 7 1  55 69 79 70 53 68 4 48 60 58 29 80 6 84 
78 83 50 6 1  26 28 62 32 34 59 11 38 8 87 2 40 15 47 18 
63 66 65 36 67 49 22 23 1 5 16 17 25 43 44 88 37 56 5 1  
12 3 76 14 10 27 3 1  45 7 21  20 9 

Table 5. Ordered sequences of PDAS to the function F,, according to the decreasing 
precision of their estimates. The parameters used in the ordering procedure are the same as 
defined in the caption of table 4, with the exception of: A I ,  distance between the estimated 
multicritical point and the straight line 1 --x -2y  = 0; A*, distance between the estimated 
multicritical point and the straight line 1 - 3x - y = 0; Aexp, distance between the estimated 
exponents ( y ,  4 )  and the straight line y - 2 4  = 5 for the scaling option with e l  - -3 and 
e2 - -4. 

Ordered approximants according to increasing values of Ac 

27 34 76 58 53 36 52 56 59 50 5 1  62 37 80 57 6 1  35 60 38 
72 7 1  78 69 83 26 64 70 75 68 77 33 21  85 55 86 28 39 84 
42 54 74 29 23 24 4 1  19 8 1  46 82 79 73 25 45 40 48 12 10 
44 88 8 3 1  47 15 30 65 13 87 6 66 20 43 14 9 4 32 5 

7 49 3 17 63 22 18 2 67 16 11 1 

Increasing values of AI 

76 39 27 83 58 34 62 35 37 52 12 56 36 38 53 5 1  50 59 80 
33 6 1  57 78 60 64 72 7 1  69 77 70 26 68 75 28 21  55 86 85 
54 84 74 42 82 29 24 23 41 19 8 1  46 79 73 25 3 1  47 45 40 
48 30 32 14 10 88 8 44 15 13 66 87 65 43 20 6 9 2 4 

7 5 49 22 18 3 17 63 67 11 16 1 

Increasing values of A2 

54 34 56 27 36 77 52 76 58 53 67 37 62 64 59 80 38 50 35 
51 60 57 72 69 70 68 6 1  55 75 74 86 83 7 1  22 73 78 42 26 
85 18 79 33 21  39 28 29 84 82 23 8 1  24 19 41 46 25 45 40 

8 10 20 88 12 87 48 3 1  15 43 49 47 44 30 65 66 7 4 6 
13 14 32 5 9 16 3 17 63 2 11 1 

Increasing values of AaXp 

52 53 5 1  69 60 56 77 58 62 85 76 80 36 37 27 59 6 1  57 72 
50 38 83 26 21  78 84 64 70 7 1  86 19 68 29 24 23 28 74 75 
39 42 55 82 45 44 46 33 10 4 1  88 79 12 34 8 54 8 1  73 48 
40 25 7 15 47 35 3 1  6 14 30 4 87 5 20 32 16 65 9 3 
17 18 63 67 22 66 1 43 2 11 49 13 

Increasing values of bel 

34 27 36 76 56 53 58 52 37 33 77 62 60 59 35 38 22 5 1  55 
67 50 6 1  57 80 86 64 83 78 26 69 85 72 74 70 73 68 75 24 
42 7 1  29 23 39 21  84 40 12 8 1  46 28 19 79 25 4 1  32 2 8 
10 1 45 14 20 49 43 65 44 88 48 16 47 15 7 4 3 1  30 6 
66 82 11 3 17 18 63 13 5 54 87 9 
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Table 5-cont inued .  

Increasing values of Aez 

75 76 68 74 72 70 55 69 58 27 34 77 36 51 37 83 35 80 62 
52 56 39 53 50 38 59 24 61 57 78 60 26 21 41 23 42 71 85 
86 12 84 30 28 33 81 29 19 73 46 45 47 79 25 31 64 43 48 
10 40 8 66 15 13 88 44 4 49 20 6 65 87 11 3 17 18 63 
16 54 82 9 7 22 5 67 1 32 2 14 

Increasing values of Ae 

34 27 36 76 56 53 58 52 37 77 62 60 59 35 38 51 55 50 61 
57 33 80 86 83 78 26 69 72 74 85 70 68 73 75 24 42 71 29 
23 39 21 84 64 12 81 46 28 19 79 40 25 41 10 8 45 43 49 
20 44 88 48 65 47 15 16 4 22 31 7 67 ‘30  6 66 82 11 1 
3 17 18 63 32 13 2 5 14 54 87 9 

I I I I I 

- 

Y 

0 1  0 2  0 3  O i  0 5  

X 

Figure 1. Flow diagram in the ( x ,  y )  plane of the PDA no 1 (L = 1, M = N = 3) for the 
function F,. The heavier lines indicate the trajectories which correspond to the scaling axes. 
The dots on the flow-lines are spaced in unitary ‘time‘ intervals. 

belongs to the set of PDAS which represent F, exactly. Since the polynomials QM and 
RN are linear in x and y, the system of coupled ordinary differential equations (2.14) is 
already linearised, and we can find solutions that hold in all regions of the x, y plane. In 
particular, since the estimated multicritical point is stable, every flow-line, no matter 
what its starting point, converges onto (x,, y c ) .  The characterisation of the critical lines 
as flow-lines, and the asymptotic alignment of the flow-lines with the scaling axis of 
slope el  = -10 (associated with the smallest value of ] A  I), are also apparent from figure 
1. Estimates of F, along some flow-lines were obtained by the numerical evaluation of 
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equation (2.14). Of course, in the case of this particular PDA, the defining equation (1.6) 
can be solved exactly, so that our numerical calculations could be controlled against the 
corresponding exact results. For example, in figure 1, if we start at the beginning of the 
flow-lines with the exact value of F,, after a time interval of about three units, which 
already leads to the vicinity of the multicritical point, the usual error of our computer 
program amounts to about 0.3%. 

The flow-lines corresponding to the approximant number 73 for Ff (L = 35, N -- 34, 
N = 37) are shown in figure 2. This PDA exhibits a stable multicritical point with the 
same features as the previous one. The asymptotic alignment of the flow-lines with the 
scaling axis corresponding to e l  = -3 is more striking in this case. This is due to the 
larger value of the difference lAl  - h21. The estimates for Ff have a typical error of about 
1% after an interval of three time units. In these numerical calculations, we used a 
Runge-Kutta method of fourth order for obtaining the flow diagrams, and a Simpson 
procedure for performing the integrations, without worrying about the precision of the 
results. 

0 5  

0 4  

Y 0 3  

0 2  

0 1  

I I I I 

0 0 1  0 2  0 3  
X 

Figure 2. Flow diagram in the (x, y )  plane of the PDA no 7 3  ( L  = 35, M = 34, N = 37) for the 
function Fd. The symbols have the same meaning as in figure 1. 

4. Dimensional crossover in the Ising model 

An Ising model with axial anisotropy may be defined by the Hamiltonian 
( X , Y )  ( 2 )  

( 1 . 1 )  (1J) 1 1 

X = - J  1 s1s,-RJ 1 s , s , - -Hc~-H,~C(-~)~ 'S ,  (4.1) 
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where s, = *l, the first sum is over nearest-neighbour pairs in the x y  planes, and the 
second sum is over nearest-neighbour pairs whose relative displacement vector has a z 
component. H stands for the applied magnetic field, and H,, for a staggered magnetic 
field which acts oppositely on adjacent planes of constant z (the parameter q, is 0 or 1 
depending on whether s, belongs to an even or to an odd x y  plane). In this work we 
consider J > 0 only, so that for R > 0 the system orders ferromagnetically, while it 
exhibits metamagnetic behaviour for R < 0. The special value R = 0 corresponds to a 
set of uncoupled two-dimensional ferromagnetic Ising models. Therefore, according to 
the ideas of smoothness and universality, an abrupt change in the values of the critical 
exponents is expected to occur at R =O. The method of PDAS is quite suitable for 
studying this dimensional crossover between d = 3 and d = 2. 

Harbus et a1 (1973) studied the four-dimensional phase diagram, in the T - H  - 
H,, - R space, and some thermodynamic properties of this model. In particular, they 
identified a tetracritical point, where two ferromagnetic and two antiferromagnetic 
phases become identical, at R = H = H,, = 0 and T is equal to the critical temperature 
T, of the two-dimensional Ising model. Using the symmetry properties of the model 
Hamiltonian (4.1), one can easily establish the relation 

T(T,  R,H=Ho,Hst=O)=9(T,-R,H=O,H,t=Ho),  (4.2) 

where 9 is the canonical partition function. From equation (4.2) we may write 

x(T, R, H = Ho, Hst = 0 )  = xst(T, -R, H = 0, Hst = Ho), (4.3) 

where ,y and ,yst are the direct and the staggered susceptibilities of the model system. 
Thus, in zero fields, Harbus and Stanley (1973) formulate the scaling hypotheses 

X ( T ,  R I =  /71-YZ(R/1T/') (4.4) 

X d T ,  R )  lTl-YZ(-R/lT\') (4.5) 

for R > 0, and 

for R < 0, with T 5 ( T  - T,)/T,, and y = 4 = 1.75. The critical lines which are incident 
on the tetracritical point are associated with the singularity of the scaling function at zt. 
They are described, therefore, in the vicinity of this multicritical point, by the sym- 
metrical curves 

7' = *R/zt. (4.6) 
Although the one-variable series analyses, which were performed by Krasnow et a1 
(1973), seem to support the scaling prediction, we decided to construct PDAS for the 
two-variable series expansions obtained by Harbus and Stanley (1973). Besides 
checking the previous analyses, the PDAS are expected to produce numerical results for 
the crossover exponent q5 and the shapes of the phase boundaries near the tetracritical 
point. 

We considered a triangular series of order ten for the reduced susceptibility, 
= kTX/N, of the model system defined by the Hamiltonian (4.1) on an FCC lattice. 

Using the variables 

x tanh(J/kT), y = tanh(RJ/kT), (4.7) 
we constructed 61 approximants of orders 7 , 8  and 9. This is the complete set of PDAS, 

up to these orders, with L 5 1 and M = N 3 3. In figure 3 the estimates for the location 
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Figure 3. Estimates for the location of the tetracritical point (xt, yt) for the series expansion 
of the susceptibility of the axial anisotropic spin-4 Ising model on the FCC lattice. The 
crosses, open circles and full circles indicate PDAS of orders 9,8 and 7 respectively. Intervals 
of *lo% and *l% about the exact value of xt are also indicated. 

of the tetracritical point are presented. The exactly known tetracritical point, 

xt = J2- I, yt = 0, 

is also indicated in this figure, as well as intervals of * l %  and *lo% of xt. We do not 
note any alignment of the estimates along the critical line, although they clearly tend to 
be situated on the half-plane y > 0 (which indicates the influence of the ferromagnetic 
critical line). In figure 4 we see estimates for y as a function of estimates for xt. The 
values y = 1.25 and y = 1.75 are indicated. The estimates for y are plotted against the 
estimates for yt  in figure 5 .  In figure 6, estimates for 4 are plotted against estimates for 
y. The straight line y = 4 was drawn in order to test the agreement of the results with 
the scaling prediction y = 4 = 1.75. Some correlations are observed in this figure, but 
they do not allow any conclusions. Finally, one may observe that the estimates for e l  
and e2 vary in a rather large interval. However, all estimates are such that lell < 1 and 
/e21 > 1. In particular, those approximants whose estimates for the tetracritical point are 
close to the exact known location yield values for el and e2 such that lell << 1 and le21 >> 1. 
This seems to indicate that the original x and y axes are indeed the proper scaling axes. 

We believe that the nature of the tetracritical point as a terminal point of the 
ferromagnetic line may be one of the reasons for the rather poor performance of the 
approximants in this problem. In order to work with a quantity which takes into 
account the symmetry of the model, we defined the average reduced susceptibility, 

(4.8) 

which diverges at the critical line for both R > O  and R < O .  From (4.3), the series 
expansion for ,Pm may be obtained trivially from the series for ,f by a mere suppression 

X m  = 3~ +  st), 
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X 

Figure 4. Estimates for the tetracritical exponent y plotted against estimates for xt. The 
symbols are the same as in figure 3.  The broken lines indicate the values of the critical 
exponent y for the two- and three-dimensional Ising models, and the exact value of xt for 
the two-dimensional king model. 
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Figure 5. Estimates for the tetracritical exponent y plotted against estimates for yt. The 
symbols have been defined in the captions of figures 3 and 4. 

of all odd terms in y .  Thus, from the defining equations of the PDAS it is possible to have 
PL and QM even in y and RN odd. This really happens numerically, and leads to the 
fixed value y t  = 0 in the estimates for the tetracritical point. In the approximants for gm 
we noted a large number of cases where ill conditioned equations were obtained. It was 
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Figure 6.  Estimates for the tetracritical exponent y plotted against estimates of the 
crossover exponent 4. The scaling prediction y = q5 = 1.75 is also indicated in this figure. 

impossible to construct any approximant of order eight, but there were 5 5  approxi- 
mants of order nine which, despite being off -diagonal, displayed well conditioned linear 
equations. Figure 7 shows estimates for y as functions of estimates for xt. The marked 
point xt = A-- 1, y = 1.75 indicates that the results are really consistent with the 
expected values. The apparent dispersion of the estimates and the linear correlation 
they reveal is known from dlog Pad6 results for one-variable series. Figure 8, where we 
plotted estimates of 4 versus estimates of xt, shows a similar behaviour. Finally, figure 
9, which displays estimates of y versus estimates of 4, seems to indicate very strongly 
that we really have y = C$ = 1.75 for this model. It is to be emphasised that in this case 
the values el = 0 and e2 + 30 are fixed by symmetry. 

We also constructed flow diagrams for some of the best approximants to the original 
series for f and for f,n. It is remarkable that the best approximants exhibit locally stable 
tetracritical point estimates. The starting points of the flow-lines were located on a 
circle of radius r = 0.32862 and centred at (A- 1,0),  which contains the estimated 
critical point ( x ,  = 0.10174, y c  = 0.10174) of the isotropic Ising model on an FCC lattice 
(Sykes et a1 1972). 

Figure 10 shows the flow diagram for an approximant of order nine (L=25 ,  
M = N = 15) for the series expansion of f .  This approximant gives the estimates 

xt = 0.411873, Yt  = -3.56741 x IO-', 

el  = -1 .415158~  lo-.', e2 = 2.34177, y = 1.87897, C$ = 1.79030. 

The alignment of most flow-lines with the scaling axis with slope el  is apparent. The 
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Figure 7. Estimates for the tetracritical exponent y plotted against estimates for x,. All 
crosses represent results from approximants of order nine to the series expansion of the 
average susceptibility (&y + ixst) of the axial anisotropic Ising model on the FCC lattice. The 
big cross indicates the exact location of xt and the scaling prediction for y. 
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Figure 8. Estimates for the crossover exponent q5 plotted against estimates of the tetra- 
critical parameter xt. The order of the approximants as well as the series expansion which 
has been used and all the symbols of this figure are the same as in figure 7. 

marked flow-line corresponds to the estimated critical boundary. A log-log plot of 
x - xt versus y - yt for this particular line provides another estimate for 4, The points 
are linearly correlated, even in regions not so close to the tetracritical point. If one 
estimates the slope graphically, it is possible to obtain 4 = 1.6 f 0.2. 
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Figure 9. Estimates for the crossover exponent 4 plotted against estimates for the 
tetracritical exponent y. We are using approximants of order nine for the series expansion 
of the average susceptibility of the axial anisotropic Ising model. The scaling prediction 
y = 4 = 1.75 is indicated by the big cross. 
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Figure 10. Flow diagram, in the (x = tanh J/k7' ,  y = tanh R J / k T )  plane associated with a 
PDA of order nine, given by L = 26, M = N = 15, for the series expansion of the reduced 
direct susceptibility of the axial anisotropic k ing  model on the FCC lattice. The chain curves 
indicate the estimated scaling axes. The heavy line indicates the estimated phase boundary. 
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Finally, figure 11 shows the flow diagram for an approximant of order 9 (L  = 21, 
M = 30, N = 5) for the series expansion of Zm. The estimated tetracritical parameters 
are 

xt = 0.4146114, y = 1.7659, q5 = 1.7840, 

while 

yt = 0, el =0 ,  e2 -+ *, 
are fixed by the biased symmetry requirements. Due to the parity of the polynomials, 
the flow diagram is symmetric, so only the half-plane y > 0 is displayed. The same 
features observed in the former flow diagram are visible here, but a log-log plot of the 
estimated critical line produces the result 4 = 1.75 f 0.02, which exhibits the better 
quality of these estimates. 
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X 

06 

Figure 11. Flow diagram, in the (x = tanh J / k K  y = tanh RJ/kT) plane, associated with a 
PDA of order nine, given by L = 21, M = 30, N = 5 ,  for the series expansion of the reduced 
average susceptibility of the axial anisotropic Ising model on the FCC lattice. The scaling 
axes are fixed by symmetry. The heavy line indicates the estimated phase boundary. 

5. Summary 

We used finite double-variable power series of some test functions and thermodynamic 
model functions to assess the performance of the PDAS for estimating multicritical 
parameters and phase boundaries. 

The test functions were chosen so that their singular parts simulated the kind of 
multicritical behaviour which is expected to occur in physical situations. Some test 
functions could be represented exactly by PDAS. In this case we obtained excellent 
numerical results with approximants of lower orders. The accuracy of the estimates for 
the test functions which could not be represented exactly by approximants of finite 
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order tended to improve as we increased the order of the approximants. This happened 
even in cases where approximants of relatively lower orders provided quite erratic 
estimates. Also, we used the method of characteristics to obtain numerical solutions for 
the defining differential equations of some approximants. It was possible to verify a 
strong correlation between the quality of the estimates for the multicritical parameters 
and the accuracy of these numerical solutions. 

With the purpose of analysing the crossover behaviour between two and three 
dimensions, we constructed PDAS for the series expansion of the direct susceptibility of 
the axial anisotropic Ising model. The quality of the estimates improved considerably 
as we turned to the analysis of the more symmetric series expansion corresponding to 
the sum of the direct and the staggered susceptibilities. Besides using the PDAS for 
obtaining numerical estimates of the multicritical parameters, we also performed 
numerical solutions of the defining differential equations for some approximants. This 
procedure gives an estimate of the critical line in the anisotropy(R)-temperature( T )  
plane and an additional estimate of the crossover exponent 4. It is worth remarking 
that, despite the good overall agreement with the scaling predictions, the existent series 
expansions are.a bit too short to provide really excellent estimates by means of the 
PDAS. 
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